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Abstract. Conventional information platforms store information in a manner that separates the
data elements from its organization, e.g., schema and code specify the organization of the data
elements but store it separately from the data elements. That separation is contrary to any notion
of how humans comprehend the world. The first principles of information, expressed as notions,
provide the basis for a method of storing information where data elements and their organization
are integrated. The generality of this method appears to enable most, if not all, forms of
information to be integrated and stored within one platform. These forms include: traditional
database information; mathematical relationships and functions; class and object hierarchies;
value domains; temporal variability; uncertainty and random variables; and complex sequences.
Sign and count are shown to be independent attributes that arise from the application of these
principles. Zero and count are also shown to arise independently. Examples demonstrate that
there is only one way to specify a given unit of information using this method. The storage
method suggests a foundational basis for understanding information itself.

1. INTRODUCTION

Information technology is founded on the idea that any form of information, ranging from text to
databases, can be stored as data elements that are organized by a data storage structure stored
externally to the data elements. Each of today’s information management platforms implements
that paradigm using various mechanisms for specifying data storage structures (i.e., schema, file
formats, data types, documentation and software, as well as primitive data storage structures
such as trees and lists). The utility of externally-specified data storage structures is storage
efficiency and speed. However, an externally-specified data storage structure limits the type of
information that can be stored in a platform. While useful, those data storage structures do not
arise from fundamental notions about how we create and use information to comprehend the
world. Rather they are primarily analogs of how we organize data elements for the purpose of
presenting and communicating information among ourselves, e.g., delimited strings and tabular
arrays.

I contend that the problems we face in managing information arise from (1) our use of data
storage structures that are analogs of how we present and communicate information, in contrast
to how we comprehend the world, and (2) storing data elements and their organization
separately.

Here I discuss and demonstrate an extremely general storage method developed from the first
principles of information. Those principles are drawn from observations of how humans create
and use information to comprehend the world. Like the human mind, this method integrates data



elements and their organization. Significantly, the generality of this method appears to enable
most, if not all, forms of information to be stored in the same platform.

2. APPROACH

Logic and mathematics are either a form of information or describe the characteristics of various
types of information. However, neither logic nor mathematics prescribe the characteristics of
information, nor do they provide a complete or consistent description of the fundamental
characteristics of information as a whole. In addition, some logical and mathematical notions are
beyond comprehension (e.g., infinity) or arise from a notational convention (e.g., ordered pair).
Logic and mathematics do, however, provide: methods; an expression notation; and typing of
information and its components.

The approach used here identifies and then applies the first principles of information using the
methods of logic and mathematics as follows:

. Express our understanding of the world in the form of axioms, i.e., independent
statements accepted as true without proof;

. Reduce the characteristics observed in all forms of information to those that are the most
fundamental and express them by independent self-evident statements each referred to as
a notion;

. Develop conventions for both a graphical notation and a character expression notation
that convey the subject ideas;

. Identify and distinguish among the components of information by usefully-named types
and organize them in taxonomies; and

. Use logical methods (e.g., reductio ad absurdum) to recognize erroneous information.

In order to avoid inconsistent and ambiguous terminology, each term having a variety of
meanings or that is possibly ambiguous is defined and underlined when first used. Subsequent
use of that term is limited to its defined meaning. Italicized terms in an axiom or notion are
implicitly defined therein.

For the sake of brevity, this paper focuses primarily on information typically stored in databases.
In addition, only those axioms and notions of interest here are included, some of which are
combinations of more resolved axioms and notions.

The discussion introduces each axiom and notion, defines each term, describes each notation
convention and presents examples. The examples are intended to demonstrate that this method
can store information that is readily stored in a conventional database as well as more complex
information that is difficult to store in a database. The following section discusses the elements
of the storage method; subsequent sections discuss their implementation, develop various
element subtypes, and discuss information structures and patterns using those element subtypes.

3. STORAGE METHOD

This section introduces the axioms and notions about how we comprehend the world and
discusses the development of the storage method from them.



3.1 Basic Axioms

Axiom: There is a world that is external to each human that is made of external things each
having external properties. A human comprehends a portion of those external things and
external properties from his/her experience with them by storing and processing mental
constructs of those experiences, as well as anticipated (future) experiences and
expectations of experiences.

Axiom: A mental construct is stored in an information site that is either (1) a brain or (2) an
information device created by humans; each information site is independent of the other
information sites.

The term external properties as used above refers to those that a human can detect by the
presence of the external thing alone. Examples of external properties (other than those stored in
an information site) are color and mass; name and composing parts are not external properties.

Information is defined as what is stored in an information site. An information device is either a
passive information device or an active information device, the latter being a site where
information can be altered by a process. Examples of the former are a book and a name tag;
examples of the latter are a disc drive and a blackboard. An active information device plus the
means of accessing and altering it (e.g., an operating system and applications) is called a
platform. A relational database plus its management system is a platform. A brain is a platform
in this sense.

Axiom: Within an information site, we can create internal things each valuated by internal
properties as a means of manage our affairs.

An internal thing and an internal property have no counterparts in the external world. The term
internal properties also refers to those properties of an internal thing alone. Imagining an
external thing or property does not make it internal; it’s virtual as discussed later.

Axiom: A thing or property may be composed of one or more other respective things or
properties. There are things and properties that are not composed of other things or other
properties.

A thing that composes is called a composing thing; a thing that is composed is called a composed
thing. The corresponding terms property are composing property and composed property. The
second part of this axiom asserts that the world is ultimately atomic and is not infinitely
divisible.

A thing is understood by its: properties, its composing things and its composed things. Each of
these is called a thing characteristic. For example the thing characteristics of a human arm are its
mass and color, composing a human body and being composed of a hand and fingers. There are
two property characteristics: composing properties and composed properties.

Axiom: Within an information site we store concepts of things each identifying both (1) the thing
characteristics that are expected to apply to each member of a group of things and (2) the
thing characteristics that are not. We also store concepts of properties that similarly



identify property characteristics. A concept may be used to classify things and
properties.
Here, a thing or property is said to have/not have a characteristic; a characteristic is said to be
applicable/non-applicable to a thing or property; a concept is said to identify applicable/non-
applicable characteristics; and a characteristic is said to be identified (as applicable/non-
applicable) by a concept.

Like an internal thing or an internal property, a concept has no counterpart in the external world,
i.e., it’s found only in an information site. (Concept and #ype are equivalent notions. However, a
concept is stored in a site but a type is not.) The following are examples of things and
properties, both internal and external, identified by a term that is a name of its classifying
concept.

external internal
external thing  external property internal thing internal property
human body height person person name
rock hardness account Social Security No. (SSN)
Earth diameter role role name
molecule mass identification Vehicle Identification No. (VIN)

Axiom: Each property of a thing applies to the thing as a whole.
For example, “eye color” is not a property of a human body as a whole; it is a property of an iris.

Axiom: Each (external or internal) thing is distinguishable from all others by its space-time
existence; each (external or internal) property is distinguishable because the thing it
valuates is distinguishable.

The earlier axioms contained the phrases: (1) a thing “valuated by” properties, (2) concepts
“used to classify” both things and properties, and (3) thing and properties “composed of” other
things and properties. These ideas are each embodied in the more general term association.

3.2 Elements

The above axioms described our understanding of the world and the existence of information we
use to comprehend it. This subsection introduces notions describing the organization of
information in terms of the atomic components common to all forms of information and
introduces additional axioms.

Notion: Information is composed of indivisible (i.e., atomic) elements.

As demonstrated in later sections, information stored in a platform can imply elements that are

not stored. This is the basis for the element subtypes listed in the following taxonomy.
element
stored element — an element that is stored
implied element — an element that is not stored but can be determined from those that are stored

Stored and implied elements are described here as “specifying” information. Thus, the
unmodified term “element” means specified element.



Notion: An element is either (1) an item that stands for a thing, property or concept, or (2) an
association that directionally associates two items.

Item and association are subtypes of element. (An item is comparable to a data element; an
association is the means of organizing items and is often implied by a data storage structure.)
The term “stands for” refers to either (1) an item representing an external thing or an external
property, or (2) an item being a concept, an internal thing or an internal property. An item is said
“to have” an association and “to be associated with” another item. An association is said “to
associate” items. We can surmise that an item not having an association cannot specify
information because it has no context. Thus an item must have one or more associations.

Axiom: A thing, property or concept either temporally precedes or succeeds a thing, property or
concept with which it is associated.

Precedence implies independence; succession implies dependence. The precedence/succession
of two items is specified by the directionality of their association. The two ends of an
association are distinguished by an end-id that is either “1” or “0”, respectively called the 1-end
or the 0-end. The sequence is arbitrarily chosen to be from the 1-end to the 0-end. With respect
to a given association, the items on those two ends are respectively called the 1-end item and the
0-end item. Since a 1-end item precedes a 0-end item, the two items in the context of an
association are also respectively called the preceding item and the succeeding item.

3.3 Information Diagrams

An information diagram, or simply diagram, is a graphic means of depicting associated items.
Four diagram subtypes are developed and used here to depict associated items and display each
element’s subtype. All diagram types depict an item by a circle and an association by a line with
its directionality indicated by its end-ids. Figure 1 displays the first two diagram types: an
illustrative diagram, or simply illustration, and a model diagram. An illustration displays each
(stored or implied) element; a model diagram displays each element subtype once to represent
any element of that subtype.

The illustration depicts two stored items and one stored association. A stored element is
depicted by a thick solid line; an implied element is depicted by a dashed line (as shown
in Figures 8, 21 and 23).

The model diagram displays the two element subtypes introduced above with its name
displayed inside or near its depiction. Item is depicted by a thin solid line; association is
depicted by a dotted line to indicate that an item having a 0-end or a 1-end association
(but not both) is optional. The cardinality of an association subtype (suggested by the
crowfeet on each association end) depends on the item subtype as discussed in §3.4.
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Figure 1. Illustrative and Model Diagrams with Element Display Convention

Here and elsewhere, parentheses surround a redundant portion of a type name that has been
included for clarity, e.g., “preceding (1-end) item” and “(stored or implied) element.” In
addition, in a compound type name, one of the subtype names may be used in place of its
supertype, e.g., “preceding object” where “object” is a subtype of “item.”

3.4 Items and Association Subtypes

What an item stands for provides a basis for subtyping items as shown in the following
taxonomy. An underlined term in this and subsequent taxonomies without a stated definition

indicates that it is defined by its subtypes (e.g., instance is a supertype of object and value).
item

instance
object — an item that stands for a thing
value — an item that stands for a property

concept
class — an item that stands for the concept of a thing
metric — an item that stands for the concept of a property

The associations among these item subtypes consistent with the above notions are as follows:

. An object is classified by a class and may be valuated by one or more values;

. A class may classify one or more objects and may be valuated by one or more metrics;
. A value is classified by a metric and may valuate one or more objects;

. A metric may classify one or more values and may valuate one or more classes;

. An item having a given item subtype (1) may be composed of one or more other items

with the same item subtype and (2) may compose one or more other items with the same
item subtype.

Figure 2 displays two expanded forms of the model diagram shown earlier in Figure 1
incorporating the item subtypes defined above. Also incorporated is the cardinality/optionality
of associated items as stated in the above notion by using crowfoots and dashed vs. solid lines
consistent with conventional data modeling notation. Each element depicted is any (stored or
implied) element of the displayed element subtype. These diagrams also serve to define and
name the depicted association subtypes (e.g., a classification association is an association with a
concept on its 0-end and an instance on its 1-end). The left model diagram depicts the element
subtypes based on both the classification and valuation; these element subtypes are called the
basic element subtypes in order to identity and distinguish them from additional elements
subtypes introduced later. The right model diagram depicts the element subtypes based on
classification alone.
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Figure 2. Two Expanded Model Diagrams

The basic association subtypes named and defined in Figure 2 along with their supertypes are

identified in the following taxonomy of association subtypes.
association
non-composition association (an association having different item subtypes on each end)
classification association (an association that classifies)
object classification association — an association that classifies an object by a class
value classification association — an association that classifies a value by a metric
valuation association (an association that valuates)
object valuation association — an association that valuates an object by a value
class valuation association — an association that valuates a class by a metric
composition association (an association having the same item subtypes on each end)
instance composition association
object composition association — an association that specifies composition of objects
value composition association — an association that specifies composition of values
concept composition association
class composition association — an association that specifies composition of classes
metric composition association — an association that is specifies composition of metrics

Extending the above association naming convention to items, the preceding (1-end) item of a
given composition association is called a composing item and the item on the other end (the
succeeding item) is called a composed item. The term “composition” is used broadly to
encompass all of the ways that two items with the same basic item subtype (e.g., two objects)
can be associated. Some commonly used terms for the term composition (as used here) are:
inclusion, aggregation and belonging; some terms for composed (succeeding) items are: group,
whole, collection, product, sum, aggregate, heap and set; and some terms for composing
(preceding) items are: component, part, portion, constituent and member. The different notions
of composition suggested by these terms are discussed in later sections.

Notion: The multiple items composing the same item are disjoint (i.e., they do not overlap). The
zero or more items composing the same item are complete (i.e., all items are specified).



4. IMPLEMENTATION

The storage method discussed above appears to be applicable to all information in a brain or an
information device. However, a human mind has greater capability than an information device
for certain forms of information, e.g., facial features. In addition, an information device has
greater capability than a human mind to store other forms of information, e.g., numbers and long
text strings, as well as bit strings that generate sounds and images (what is commonly referred to
as data). The greater capability of the former is not yet fully understood; as demonstrated in the
remainder of this paper, the greater capability of the latter is provided by the attributes of
elements. The remainder of this paper introduces element attributes, and discusses how elements
and their attributes can be implemented in a platform called the I-A platform. The item identifier
and content attribute are discussed in this section; the remaining attributes are discussed later.

A brain stores associations by physical connections; today’s information devices store
associations by various non-physical methods. One of the methods of implementing the I-A
platform in today’s information devices (and the one most easily envisioned) is to store each
element in a separate record with the item identifier(s) and attribute(s) applicable to the subject
element subtype. However, nothing discussed here is dependent on that implementation method.

4.1 Item Identifier

Each stored item must be uniquely identified across all I-A platforms that are mutually
accessible. That identifier is a bit string called an item identifier abbreviated item-id. When
useful, an item-id is expressed by a bold uppercase letter (e.g., A) displayed at the upper left of
an item circle. Sometimes it is indexed by apostrophes or a backslash to indicate a range of
items (e.g., A', A" ... A\). An attribute abbreviation or a parameter also may be indexed in this
manner.

4.2 Content Attribute

The first element attribute is content, an attribute of a stored item that is a bit string or absence
thereof that can be interpreted as a character string, sound, picture, etc. Table 1 describes this

attribute and tabulates its taxonomy. Content is abbreviated by “c”, null content is displayed as
shown in the table and “c” is a parameter for non-null content.

Table 1. Content Subtypes and Their Use as an Attribute

taxonomy of content (and abbreviation) what is stored display convention
content null content nothing "
(c or blank) ] ] ] ]
non-null content (¢) one or more bits | (see following discussion)

The non-null content of a class, metric or value is always a character string that is a modified or
unmodified noun. The non-null content of an object is interpreted according to its class, e.g., an
object whose content is a jpeg file would have “jpeg file” as its class. The non-null content of a
concept is the name given to that concept and is called concept name. The following is an
example of non-null character string content for each item subtype along with the convention
used to display it in diagrams, expressions and text.



item subtype display convention example

class bold font Person

metric italicized font Time

object within single quotes ‘We hold these truths...’
value within single quotes ‘kilogram’

The content of a stored item is never unknown; null content specifies that there is no content as
demonstrated in later examples. Unknown content is specified by the fact that the subject item is
not stored. Cardinal numbers (numeric characters specifying a count) are not stored as content.
Cardinal numbers are discussed in §9.2.

In diagrams, content or a parameter for that content is displayed inside the item circle. In text,
an instance is expressed by its concept name and subtype, e.g., “Person object” and “Time
value.” When discussing what an instance stands for, it is written in the conventional manner,
e.g., “person” and “time.” In a similar manner, a value may be expressed by its metric and value
with a delimiting colon, e.g., “Color: ‘blue’.”

4.3 Traits

An item’s content, reality (discussed later), composition with other items, and (for instances)
concept determines the information it specifies. With respect to a given item, each of these is
called a trait. An instance’s traits specify the storable characteristics of the thing or property it
stands for. (An item’s item-id, and where and when that item is stored are not traits of that item
because they can be changed at will without affecting the information specified). Examples of
traits are an instance being composed of/by other things (e.g., having/not having legs), objects
having values (e.g., a person’s height) and the object’s class (which may identify non-storable
characteristics). The following lists the traits that an item of a given item subtype may or must
have. Except for an objects’ valuating values and composing objects (as noted with an asterisk),
each trait is presumed to be specified. The first four listed traits are referred to as non-concept
traits.

class traits metric traits object traits value traits
content content content content
class reality metric reality object reality value reality
composed classes composed metrics composed objects composed values
composing classes composing metrics composing objects* composing values
valuating specific valuating values* valuated objects
associated class associated metric

4.4 Item Domains

Those disjoint items standing for things, properties or concepts form a domain called an item
domain. The items in an item domain may or may not be countable. An item domain specified
in an I-A platform is one of the following subtypes (shown below with an example) based on the
extent to which items are stored or implied.

item domain subtype how specified example objects in an object domain
fully-itemized all items are stored people who have been a US president
partially-itemized items are stored and implied living people (those I know plus all others)
un-itemized all items are implied pennies in my piggy bank



The items in a fully-itemized item domain are usefully expressed in a linear expression that lists
each item and delimits them by “o7”, where “or” is an “exclusive or,” That expression is called
an OR expression that has the form: [0' or 0" ... or 0\], where O identifies an item by its item-id,
content or (for an object) a distinguishing value. For example, [Woman or Man] is the OR
expression for the class domain for the class: Person where 0 is each subclass’s content. (A
diagram of this example is presented in §6.2.4). In diagrams, an OR expression may be
displayed to the immediate right or left of an item to which that expression applies.

5. FURTHER ITEM SUBTYPES

This section introduces the subtypes that can be understood without regard to an item’s being
composed of/by other items. Each of these item subtypes is independent of the others, and some
correspond to a distinction expressed by words and lexical components commonly used in the
English language. (Item subtypes that arise from composition are introduced in §6).

5.1 Representational and Non-representational Instances

As described earlier, an instance either represents a thing or value or is a thing or value. The
instance subtypes based on this distinction (i.e., whether or not an instance has an counterpart in
the external world) are representational instance and non-representational instance. Examples of
this distinction are discussed with concepts in §7.2.

5.2 Singular and Plural Items

Notion: An instance either (1) stands for one thing or one property, or (2) more than one thing or
property. A concept either (1) classifies an instance that stands for one thing or one property, or
(2) classifies an instance that stands for more than one thing or property.

The item subtypes based on the distinction identified in the above notion are singular item and
plural item.

A concept’s content (concept name) is either null or a noun that is one of the following: singular
noun, plural noun, or either singular or plural noun (e.g., fish). A concept is either singular or
plural irrespective of its concept name and is specified as such (as discussed in §9.8). Some
classes have no plural class because they are uncountable. One example of such a classes is
Furniture, where the noun: furniture is an “uncountable noun” (i.e., having no plural form).
Quantitative values, i.e., values having units of measure, use the same noun for the singular and
plural metric. However their units of measure do have singular and plural forms, e.g., ‘gram’
and ‘grams.” The following are examples of singular and plural concepts and units of measure
for different cases.

concept subtype example class names example metric names
singular concept Truck Radius Fish Furniture Name  Mass (unit of measure is‘gram’)
plural concept Trucks Radii Fish - Names Mass (unit of measure is‘grams’)

10



5.3 Particular and Common Instances

A singular object stands for a thing that (1) is individually identifiable or (2) is any one among
multiple things. The following notion generalizes this singular and plural instances.

Notion: The N things or properties that an instance stands for are either known or unknown. If
unknown, the instance stands for any N among N +1 or more things or properties that are
disjoint, where N is one or more.

An instance that stands for one or more known things or properties is called a particular instance;
an instance that stands for one or more unknown things or properties is called a common
instance. The “N +1 or more things or properties that are disjoint” (in the above notion) is an
instance domain.

Incorporating the singular and plural instance subtypes developed above, what a particular or
common instance stands for is as follows:

. particular (known) singular instance — one thing or property;

. common (unknown) singular instance — any one thing or property;

. particular (known) plural instance — two or more things or properties; and
. common (unknown) plural instance — any two or more things or properties.

A common instance has an instance domain of two or more instances. A particular instance has
no instance domain and is commonly referred to as being unique. The traits that determine if an
instance is particular instance or common instance are discussed in §6.2.4.

Particular and common instances are most easily understood for singular objects. Mapping is
sometimes used to describe the correspondence between what is stored in an information device
and what it stands for. A particular singular object is mapped to the thing it stands for; a
common object cannot be similarly mapped. A particular singular object is often uniquely
identified by a unique Identification value (e.g., an SSN value) or Space-time values specifying a
unique position in space and time; a common object is not similarly identified.

Plural instances and values are understood as follows:

. Plural objects — A plural object is a particular plural object if all of its composing objects
are particular because what it stands for is known; if one or more are common, it’s a
plural common object; and

. Values — A value valuating a particular object is a particular value because what it stands
for is known; otherwise it is a common value.

In the English language, the presence/absence of articles and counts identifies an object as
particular or common. A particular object is identified by the definite article “the”’; a common
object by the indefinite articles “a” or “an”. A common object is also identified by the absence
of an article or the presence of a count. Examples are shown below for objects classified by

Truck and Furniture:

. “the truck” — a particular singular Truck object representing an identified truck;

. “a truck” — a common singular Truck object representing any truck;

. “the trucks” — a particular plural Truck object representing multiple identified truck;
. “three trucks” — a common plural Truck object representing any three trucks;

11



. “the furniture” — a particular singular Furniture object representing identified furniture;
and
. “furniture” — a common singular Furniture object representing any furniture.

5.5 Specific and General Concepts
The following notion for concepts is a complement of the previous notion for instances.

Notion: The characteristics identified (as applicable/non-applicable) by a concept are either fully
known or partially known.

A concept whose characteristics are fully known is called a specific concept; a concept whose
characteristics are partially known is called a general concept. The traits that determine if a
concept is a specific concept or general concept are discussed in §6.2.4.

Knowledge of the characteristics of an instance is the basis for classifying it. For an object, we
may or may not know or care to specify all of its characteristics. When an object’s
characteristics are sufficiently known and of interest, we classify it by a specific class; when
there is absence or disinterest about some of its characteristics, we classify it by a general class.
For example, when we classify an object by Person, we are specifying that it is unknown or of
no interest whether that person is a man or a woman. For a value, we always know all of its
characteristics so that we always classify a value by a specific metric.

5.4 Existence
Axiom: A thing is perceived to exist continuously within a single finite interval in space and time.
existence — a continuous finite space-time interval during which a thing is perceived to exist.

Axiom: A thing’s existence is composed of three orthogonal spatial existences and a temporal
existence (each commonly referred to as a dimension).

Axiom: The existence of an internal thing is where and when it is stored. The existence of an
external thing in a dimension is relative to two other things in that dimension.

Spatial existence of an external thing in a given dimension is specified by Length values;
temporal existence is specified by Time values. A stored Time value is one of the following:

. One named 7Time value found in the Time value domain, e.g., ‘2001’ and ‘Jurassic’; or
. One or two unnamed 7ime values that are each one of the following:

. A start Time value, a Time value at the start of a temporal existence; or

. An end Time value, a Time value at the end of a temporal existence.

(The method of specifying a named Time value, a start Time value, and an end Time value in the
Time value domain is not addressed here). The smallest observable Time interval is called a
moment in time. The current moment in time is a 7ime value whose content is ‘Now.’

The object subtypes based on temporal existence and their 7Time values are as follows:
. historic object — an object that has a stored end 7ime value or a stored named 7ime
ending earlier than ‘Now’;

12



. future object — an object that has a stored start 7ime value or a stored named 7ime
starting later than ‘Now’; and

. current object — an object that is not a historic object or a future object.

A current object has stored or implied 7ime value(s) starting earlier than ‘Now’ and ending later

than ‘Now’. Note that an object not valuated by a stored Time value is a current object.

Since a composed thing succeeds those that compose it, the existence of a composed thing
cannot be either earlier or later than any of its composing things.

5.6 Duplicates

Two or more items that have the same traits are indistinguishable from one another — they are
duplicates, each called a duplicate item. Since a class, metric and value are each presumed to
have all of their traits specified, duplicate classes, metrics and values must stand for the same
concept or property. The I-A platform is presumed to be implemented to store such duplicates as
identical items as discussed in §6.2.2 (identity) or to delete all but one.

In contrast, an object need not have all of its traits stored. Duplicate objects that stand for
different things can arise whenever we are unable or do not care to (1) classify using a specific
class, (2) store all values or (3) store composing objects. Such duplicates are not, per se, invalid;
however storing such duplicates is neither useful nor necessary. The I-A platform is presumed to
be implemented as follows:

. If it is known that the duplicate objects stand for the same thing, then treat them as
discussed above for non-object duplicates;

. If it is known that the duplicate objects stand for different things, then specify them by
other means as discussed in §9.2 (count); and

. If there is no determination of which of the above applies, then specify them as possible

duplicates (not discussed here).

6. STRUCTURES

Items interconnected through associations can be thought of as forming a 3-dimensional
structure. Since all items in the I-A platform are interconnected, all elements are part of a single
structure called an information structure, or simply structure. We can only understand a small
portion of an information structure at a time. A portion of an information structure whose
elements are of interest is called an information substructure, or simply substructure.

A substructure or portions thereof can be typed by the information specified. For example, a
substructure that specifies hierarchy information is a hierarchy substructure. A taxonomy of
information subtypes has hierarchy information as a subtype. All substructures that specify a
given type of information have a unique combination of one or more of the following: basic
element supertypes (e.g., instance), ranges of attributes and ranges of composed/composing
items (i.e., optional items and their composition associations). Such a unique combination is
called an information pattern, or simply pattern. A pattern is named for the type of information it
describes, e.g., hierarchy (information) pattern. A substructure matching a pattern specifies that
type of information, e.g., a substructure matching a hierarchy pattern is a hierarchy substructure
that specifies hierarchy information. A pattern cannot be directly stored in a platform but in
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some cases may be displayed in a single diagram. Examples of displayable patterns are shown in
Figures 6, 13 and 17.

The fourth diagram type is like a pattern in that it describes a range of substructures using a
combination of basic element supertypes, ranges of attributes and ranges of
composed/composing items; unlike a pattern it is not named. This diagram type is used for
examples and is called an exemplar diagram or simply exemplar. Exemplars are shown in
Figures 4, 5 and 9.

6.1 Non-composition Substructures

A non-composition substructure has each of the four basic item subtypes and the four basic non-
composition association subtypes and specifies non-composition information. Figure 3 displays
the same non-composition substructure using three different display conventions used here, each
specifying that a woman named ‘Dot’ currently exists.

The substructure on the left applies the display convention described earlier but with a
non-composition association displayed by a thin line with no indication of the end-id
(end-id can be determined from the item subtype on each end). In that substructure,
Class A with content: Woman classifies object B with null content (' '); metric C with
content: Name classifies value D with content: 'Dot'; metric C (Name) valuates class A
(Woman); and value D ('Dot") valuates object B. The line depicting the association from
metric to class is dashed to indicate that the association is implied (as discussed in §7.3).
The item subtype is displayed to the lower left of the item circle when useful.

The middle and right diagrams display the same substructure using call-outs, orientation

and text formatting to display the same information. The graphically omitted elements
can be readily determined from those displayed.

A B B B
@ ‘ Woman ‘ Woman
Object
D
Name @
Metric Value

Figure 3. Alternative Displays of a Non-composition Substructure

Name. 'Dot'

If the information shown in Figure 3 was stored in a relational database, it would likely be in a
PERSON table with Name and Gender columns. A PERSON table row would stand for the
object. The Gender column would specify the subclass of the person. If a surrogate key were
used, it would be equivalent to the item-id of the object, e.g., B. A relational database can only
store information having a predetermined organization with little of that organization directly
stored by associations. The concept names: “Person” and “Name,” as well as “Gender,” would
not be stored in the PERSON table; they would be stored in a schema external to the data
elements in the table. None of the non-composition associations are stored; they are implied by
the database system’s encoded logic.
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6.2 Composition Substructures

A composition substructure has one or more composition associations. Unlike non-composition
substructures, composition substructures allow many different ways for an item to compose or be
composed, thereby giving rise to a variety of different patterns. The two exemplars in Figure 4
introduce additional display conventions that are applicable to substructures and patterns as well.

The left diagram introduces the convention for depicting a composition association. An
element is displayed as discussed in §3.3. The ends of a composition association are
distinguished by the small circle at the 0-end.

The right diagram introduces the convention for items that are omitted for brevity. In this
diagram, item A' is composed of item B' and B", and composes no items; item B' is
composed of two un-displayed items and composes item A'; and item B" is uncomposed,
and composes item A' and one un-displayed item. (The indexes on the item-ids, e.g., B',
B", are used to simplify the display of different item-ids; they do not identify or suggest a

sequence).
A

composed (succeeding) item—>

composition
assocation

B

composing (preceding) item—=>

item

Figure 4. Conventions for Substructures, Patterns and Exemplars

Subsequent diagrams use a thin dashed line as follows: in a pattern and an exemplar, it indicates
that the element is optional (as show in Figures 6 and13); in an illustration, it indicates that it is
implied by stored elements (as show in Figures 8 and 23).

The following subsections discuss four of the simplest patterns and substructures that are found
in more complex patterns and substructures.

6.2.1 Replication Information

The left diagram in Figure 4 (above) specifies that item A is composed of item B only. Being
composed of a single item, item A is interpreted as a replicate of item B, i.e., item A is a
subsequently-stored item that is the same as item B. Such a substructure is called a replication
substructure with item subtypes: replicate item and replicated item. A replicated concept is a
subsequently-created synonym with the same context (e.g., the same concept in the same
language). Examples are displayed in Figures 7, 9, 10 and 21.

6.2.2 Identity Information

Figure 5 displays two exemplars for the same stored elements using different display
conventions. The left diagram displays two items (A and B) that each compose the other through
two composition associations with opposite directionality. Since two items each succeeding the
other is an absurdity, they must simultaneously compose one another. These two items are
interpreted as standing for the same thing, property or concept; each such items is called an
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identical item and is found in a substructure is called an identity substructure. Identical instances
must have the same concept. Identical items are not duplicates because they have different traits,
i.e., no two identical items are identical to the same items. Two identical concepts are synonyms
with different context (e.g., the same concept in different languages). The two associations are
conveniently discussed and displayed as if they were a single association called an identity
association. The right diagram depicts an identity association by a single line. Figure 9, 16, 18-
22 and 25 display identity associations and identical items.

A B A B

=0 QOTC

item item

identity association

Figure 5. Exemplars with Identical Items

The distinction between identity and replication is the same as the following distinction found in
mathematics where X, y, a, b and c are algebraic variables:

Ify =(atb)c and x = actbc, then y = x, i.e., X and y are identical; and

If y = f(x) and f(x) is x, then y = x, i.e., y is dependent upon (and a replicate of) x.

6.2.3 AND Information
The two diagrams shown at the top of Figure 6 are discussed below.

The top left diagram is a pattern that describes item A as composed of multiple items:
B'... B\. (Ellipsis indicates that there are zero or more additional items. Multiple items
in a range identified by the same letter are referred to by that letter, e.g., the B items).
Section 3.4 defined composition broadly to encompass all of the ways that two items with
the same basic item subtype can be associated. Previous axioms stated that multiple
items composing a given item are disjoint and complete. Given these understandings,
this pattern describes information commonly expressed in English by the conjunction
“and,” i.e., item A is composed of item B' and ... item B\. This pattern is called the AND
pattern that describes AND information (“AND” is capitalized for clarity). Item A is
called an and-item. The expression displayed to the right of the and-item (A) lists the
composing B items. This expression, called an AND expression, is similar to the OR
expression but has the form: [0' & ... 0\], where O identifies an item (as described earlier
for the OR expression) and the italicized character “&” is a delimiter denoting “and.” An
and-instance may or may not be a plural instance as discussed later.

The right diagram is an object substructure that matches the AND pattern and specifies
that a Man object and a Woman object compose the plural Persons object. The and-
object (A) is a plural object that has a classification association with the plural class:
Persons. Additional examples are presented in §8.5. Note that if objects B' and B" are
particular, then the and-object (A) is a particular object by virtue of its composing objects
being particular objects; otherwise it would be common.
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AND Pattern AND Object Substructure

plural object representing
Persons <——two people, a man and a
woman

singular objects
representing two
different persons

AND/OR Pattern AND/OR Class Substructure
Q-
| /
. specific
and-item —&> ' & ... B\] ppluraI4> [Man & Woman]
class
Q P
singular replicate items that ;EZS&?‘D

are each a replicate of item C
classes

singular general concept or
singular common instance —>
replicated by items B', ... B\

general
[B'or... B\ singularclass

/
|

Figure 6. Patterns and Substructures for AND Information and AND/OR Information

6.2.4 AND/OR Information
The two diagrams shown at the bottom of Figure 6 are discussed below.

The bottom left diagram in Figure 6 is an AND pattern with an added singular item C
that replicates each B item. Since the B items are disjoint and complete with respect to
the and-item (A), they are also with respect to item C. Since the B items, being disjoint,
cannot each be a replicate standing for the same thing, property or concept, item C must
stand for any one of those multiple things, properties or concepts as discussed in §4.4.
Thus item C is either a common instance or a general concept and the B items are the
item domain for item C as indicated by its OR expression. The portion of this pattern
where C item composes the B items is called an OR pattern that describes OR
information. When combined with the AND pattern, it is called an AND/OR pattern that
describes AND/OR information.

The right diagram displays a singular AND/OR class substructure that matches the
AND/OR pattern and specifies that Man and Woman are each a replicate of Person.
The classes Man and Woman are disjoint. Thus Person is the class name of a general
class for the subclasses Man and Woman, expressed as: [Man or Woman]. Additional
AND/OR instance substructure examples are shown in Figures 12, 15 and 16.

Based on the above discussion, the trait that determines if a concept is a specific concept or a

general concept is that only the latter composes multiple singular replicate concepts (either
directly or indirectly). Similarly, the trait that determines if an instance is a particular instance or
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a common instance is that only the latter composes multiple (singular or plural) replicate
instances (either directly or indirectly).

7. CONCEPT STRUCTURES AND SUBSTRUCTURES

This section discusses the concept structures for singular (specific and general) concepts and
how concepts can be compared to further type instances and instance composition associations.

7.1 Concept Substructures

We create new singular classes and non-quantitative metrics whenever we identify new
characteristic(s) and we want to distinguish among instances that have/don’t have those new
characteristic(s). Each new concept identifies the combination of (1) the characteristics
applicable/non-applicable to the preceding concept and (2) those new characteristic(s)
applicable/non-applicable to the new concept. (The characteristics of the preceding concept
identified by a succeeding concept are commonly referred to as being inherited from the
preceding concept). When we create those concepts, we create succeeding concepts from a
preceding concept. Consistent with the conventional meaning of the prefixes “super” and “sub”
(1) with respect to a preceding concept, its succeeding concepts are each called a subconcept and
(2) with respect to each subconcept, its succeeding concepts are each called a superconcept.

Creating new singular concepts in this manner results in the following:

. Each concept has zero or more subconcepts and zero or one superconcept;

. Subconcepts are complete and disjoint with respect to their superconcept;

. There is one concept that is the superconcept of all concepts;

. A specific concept is a subconcept that has no subconcepts and no concept domain;

. A general concept is a superconcept that has subconcepts and a concept domain;

. A concept domain contains each of the subject superconcept’s specific subconcepts; and
. The organization of the concepts is a hierarchy.

A concept that is the superconcept of all concepts is called a super-most concept. The super-
most class has the class name: Object; the super-most metric has the metric name: Value. A
general concept can be expressed by the OR expression where 0 is the content of a subconcept
(as presented in the earlier example for [Woman or Man] for the general class: Person).

Figure 7 displays different portions of a class structure for various cases to demonstrate how
singular concepts are specified. Class A replicates one class: class A'; classes B, C and D are
general classes in OR class substructures because they each replicate multiple singular classes.
The content of class B (Person) is understood as the name given to the general class with the
expression: [Man or Woman]. The content of classes C and D" are null because neither has a
name in the English language. Each of the three expressions describes the subject class in terms
of its composing and composed classes. Note that the sequence of the classes is the same as
suggested by the notion of inheritance.
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Figure 7. Example Singular Class Substructures

7.2 Upper Classes

As discussed earlier, the super-most (general) concepts have the content: Object and Value.
Also what an object stands for either represents an external thing or is an internal thing. Thus
the two subclasses of Object are:

. Physical object — subclass of Object that is valuated by Mass-energy; and

. Non-physical object — subclass of Object that is not valuated by Mass-energy.

For clarity, “Physical object object” is written “Physical object.”

An object that stands for an arbitrary group of non-interacting things (see §8.1) is a non-
representational object because it has no counterpart in the external world whether the group of
things are internal things or external things. Thus a Physical object is either a representational
Physical object or a non-representational Physical object. Respective example subclasses are
listed below.

representational Physical object Automobile

non-representational Physical object Automobiles

non-representational Non-physical object Contract

One additional metric of note is Identification, a general metric whose specific submetrics (e.g.,
Name, VIN and SSN) classify a value used to identify an object. We can observe that
identification information is an internal property of (internal or external) objects. Thus
Identification valuates the class: Non-physical object. Thus a Person object is an internal thing
because it has a Name value; a Human body object in which a person resides (and having a
different temporal existence) represents an external thing and does not have an Identification
value.

7.3 Concept Specification

In a given I-A Platform, all concepts can be specified in one class structure and one metric
structure. Each such structure has an and-concept composed of each singular specific concept;
that and-concept is a specific concept called a global specific concept. That concept specifies
that all singular specific concepts are disjoint and complete. The example in §10.2 displays a
global specific class.

Figure 8 displays the same specification of concepts using two different display conventions for
the upper concepts introduced above. The global specific concepts are omitted for simplicity.
For the purpose of this figure only, three of the metrics are taken to be specific metrics. The
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diagram on the left displays classes and metrics in their respective substructures with specific
metrics valuating classes through class valuation associations. The diagram on the right
simplifies the display by omitting general metrics and using the display convention introduced
earlier (see Figure 3).

- AM B(\rf
QY_SiC?“ physical < non-specific > Qsical
o 0

classes

class
substructure

supermost
(non-specific) class

class valuation
associations

- -Space-time

—Identification
<——specific metrics Space-time
- -Space-time

metric composition ' Mass-energy
associations

@ <+——supermost (non-specific) metric

Figure 8. Alternative Displays of Singular Class and Metric Structure

metric
substructure

Note the following:

. Only the specific metrics valuate a class;

. Each specific metric valuates one or more classes;

. Each class is valuated by one or more metrics;

. Space-time valuates Object and, therefore, valuates all objects; and
. All other specific metrics valuate subclasses of Object.

Since (1) a metric specifies a characteristic identified by a class and (2) characteristics are
inherited by each of its (succeeding) subclasses, valuating a class by the metrics of its preceding
class can be implied rather than stored. The I-A platform is presumed to be implemented to
determine those implied valuation associations. Such an implied association is depicted by a
dashed line as shown in Figure 8 and later figures (as well as earlier in Figure 3). As a result,
each singular specific metric has one stored class valuation association with one class.

7.4 Concept Comparison

Figure 9 displays a simple singular concept exemplar with the global specific concept omitted.
A few of the concept subtypes are also displayed as well as descriptions of how four pairs of
concepts compare. The expression for concept A' describes that concept in terms of its specific
subconcepts, i.e., as the concept that stands for any of the specific concepts in its concept
domain.
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Figure 9. Singular Concept Exemplar with Concepts Compared

Considering only the relative composition of two concepts, there are four possible results when
comparing two concepts. Those results are listed in the following taxonomy along with the item-
id pairs of the concepts shown in Figure 9 that generates that result.

Taxonomy of concept comparison results  item-id pairs

different-concept D' and B'
not-different-concept
same-concept E and D", A'and A"
associated concept
sub>super-concept from D" to B"
super>sub-concept from B" to D"

The result of comparing a concept to itself is same-concept. A comparison result where one or
both concepts are plural concepts is the same as if all concept(s) are singular. Concept
comparison provides a basis for typing elements as discussed in the next section.

8. INSTANCE SUBSTRUCTURES

Instance substructures are more complex than concept substructures and give rise to additional
instance subtypes. The applicable axioms and instance subtypes are discussed below.

8.1 Subtypes Based on Concept Comparison

When the concepts of the two instances on the ends of an instance composition association are
compared, the result of that comparison provides a basis for typing both that association and the
instances themselves. The composition association subtypes based on concept comparison are
shown in Table 2 along with its iconic abbreviation. In subsequent diagrams, an iconic
abbreviation is displayed on the line depicting the instance composition association to indicate
its subtype.
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Table 2. Composition association Subtypes Based on Concept Comparison

taxonomy of instance composition association concept comparison iconic
subtypes result abbreviation
definition instance summation association same-concept ><
association [~ . _.
instance generalization association sub>super-concept > >
instance specialization association super>sub-concept <<
production association different-concept <>

Note that a definition association has a concept comparison result of not-different-concept. The
instance subtypes based on concept comparison that are of use here are limited to those based on
not-different-concept and different-concept. Those subtypes are as follows:
defined instance — a composed instance having a not-different-concept than its
composing instances, i.¢., the instance on the 0-end of a definition association;
defining instance — a composing instance having a not-different-concept than the instance
it composes, i.e., the instance on the 1-end of a definition association;
produced instance — a composed instance having a different-concept than its composing
instances, i.e., the instance on the 0-end of a production association; and
producing instance — a composing instance having a different-concept than the instance it
composes, i.e., the instance on the 1-end of a production association.

The terms “define” and “produce” are used to describe how a defining and producing instance
respectively compose a defined and produced instance. A defined instance is a
non-representational instance. The iconic abbreviation “**” is used for a definition association
and absence of an iconic abbreviation is used for any composition association.

8.2 Produced and Defined And-instances

Axiom: A composed thing or property is either understood as having (1) no more than the
characteristics found in its composing things or properties or (2) more than the
characteristics found in its composing things or properties.

We can observe that an and-instance standing for the former composed thing or property is a

defined instance and the latter is a produced instance. Examples of produced and-instances and

defined and-instances are presented in the remaining subsections.

The AND expression convention is extended to recognize definition and production associations
using the respective forms: [0', 0", ...0\] and [0' * 0" * ...0\]. See §10.1 for examples.

8.3 Interaction Among Composing Instances

Axiom: The multiple things or properties that compose a thing or property either interact (i.e., an
action by either one affects the others) or do not interact.

We can observe that the instances composing a singular and-instance interact but those of a
plural and-instance do not.
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Interaction/non-interaction and production/definition are independent as demonstrated in the

following for examples covering each case.

. A singular defined Tree and-object is defined by objects each standing for the same tree
in different states that interact across their adjacent temporal existences. (Singular
defined objects are discussed in the example in §10.4).

. A singular produced Tree and-object is produced by objects standing for its interacting
roots, truck, limbs and leaves.

. A plural defined Trees and-object is defined by objects standing for different non-
interacting trees (if they did interact, it would be a singular produced Forest object).

. A plural produced Energy and-value is produced by a quantitative Force value and a

producing quantitative Length value that do not interact. (No examples for this case was
found for objects).

8.4 Extended and Combined Instance Subtypes

The composed instance subtypes are organized in the following taxonomy. The distinctions
among these subtypes discussed above are shown to the right of the type name along with
examples for and-instances.
taxonomy of composed instance subtypes distinctions among composed subtype examples
composed instance
replicate instance
defined replicate instance non-interactive and =part
produced replicate instance non-interactive and >part
and-instance
produced and-instance

singular produced and-instance interactive and >sum of parts dance couple

plural produced and-instance non-interactive and >sum of parts 4 gms *3 kms
defined and-instance

singular defined and-instance interactive and =sum of parts sum of states

plural defined and-instance non-interactive and =sum of parts group of people

8.5 Composition Substructure Examples

Figure 10 displays examples of composed instance substructures with their composed instance
subtypes and iconic abbreviations. The Women object (C') and Man object (C") interact to
produce the singular Couple object (C). The Women object and the Man object (B' and C") do
not interact; they simply define a plural People object (B). The Energy value (F) is the product
of the interacting Force value (F') and the Length value (F"). The Mass value (E) is defined by
(the mathematical sum of) the two non-interacting Mass values (E' and E").
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Figure 10. Substructures with Composed Instances

Note that the plural concept of the composed instances (instances B, D and E) can be deduced
from the concept(s) of its composing instances. This allows the instance classification
association for those instances to be implied rather than stored. The I-A platform is presumed to
be implemented to validate those associations that are specified and determine those that are not.

9. REMAINING ATTRIBUTES AND THEIR APPLICATION

The remaining two stored attributes are discussed below with examples. An additional trait that
is treated as a item attribute is also discussed.

9.1 Sign Attribute

Axiom: A thing, property or concept can stop composing another thing, property or concept if it
previously composed it.

This axiom requires that we cognizes that composition and “uncomposition” are sequential. It
also recognizes the absurdity of a thing, property or concept being less than nothing. If we
specify composition with a composition association and then delete that association to specify its
subsequent non-composition, that deletion loses information about their previous composition.
We can preserve that information by instead adding a different association that specifies that the
composing thing, property or concept no longer composes. Earlier, the terms: inclusion, etc.,
were used to describe the information specified by a composition association. Specifying the
end of composition, or “uncomposition” is commonly described by the terms: subtraction,
exclusion, removal, etc. An association that specifies “uncomposition” is called a —composition
association; to insure clarity, the association previously called a composition association is now
called a +composition association.

As demonstrated later, there are cases where we are ignorant of whether an association is either a
+composition association or a —composition association. That association is specified by a third
type of composition association called a +/—composition association.
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The following is the taxonomy of composition association subtypes with the term “composition
association” now defined by its supertypes. Also shown are commonly-used terms that suggest
the composition association subtype.

taxonomy of composition association subtypes commonly used terms
composition association — — — —
known composition association — combination — —
+composition association inclusion addition insertion association
—composition association exclusion subtraction extraction  disassociation

+/—composition association — — — —

With the exception of the case discussed in §9.6, the above notion constrains the use of a
-composition association to those item pairs where there is a companion (stored or implied)
+composition association.

The subtype of a composition association is stored as the composition association attribute called
sign. Table 3 describes this attribute. The sign attribute is abbreviated ““s”, a known sign is
either + or —, an unknown sign (“+/=") is a variable (also shown as an OR expression indicating
that it is any known sign) and s is a parameter for a known sign.

Table 3. Sign Subtypes and Their Use as an Attribute

taxonomy of sign (and abbreviation) display convention information specified
sign unknown sign /=7 It is unknown whether the 1-end item +composes
(s) [+ or-] or —composes the 0-end item.

known sign inclusion “+” or blank The 1-end item +composes the 0-end item.

© exclusion “-” The 1-end item -composes the 0-end item.

The composition associations in previous diagrams were all +composition associations displayed
with a blank sign. In subsequent diagrams, a sign is displayed inside the iconic abbreviation and
in an expression to indicate the composition association subtype.

9.2 Count Attribute

A common instance and a count provide the means of specifying information in those cases
where the instances are:

. Too numerous (people in a crowd or molecules in a mole);
. Not distinguishable from one another (cans of peas or units of mass); or
. Individually inconsequential (paper currency in a cash transaction).

This subsection describes how a count arises in a substructure with common instances. That
description begins with an AND object substructure and then modifies it without changing the
information it specifies. (Beginning with this figure, a particular instance is depicted in a
diagram by light shading; a common instance by dark shading; and either common or particular
by an absence of shading).

The beginning AND object substructure is displayed in Figure 10. This substructure specifies
that three blue balls are included in a group. Each ball is represented by a singular Ball objects:
B', B" and B" each valuated by Color: ‘blue’. Together they define the plural defined and-object
(A) that has the implied plural class: Balls. Each of the B objects is a common object because
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which ball it represents is unknown. Since they have the same traits they are duplicates. The
duplicate B objects are presumed to be disjoint and complete with respect to object A. The AND
expression for object A with sign incorporated is: [+B', +B", +B"'].

A

Balls- - plural defined and-object defined by

three common objects

+<  >+< >4<
B" B™

three plural common definirg Ball
<+——objects with the Color: 'blue' each
having the same traits
Color. 'blue’
Color: 'blue’

Color: 'blue'

Figure 11. AND Object Substructure with Defining Common Objects

>
B'
Ball

The substructure in Figure 11 specifies the subject information and can be considered valid.
However, storing common objects in this manner allows duplicates, can be unwieldy and is
unnecessary. As discussed below and displayed in Figure 12, the same information can be
specified using fewer elements and without duplicate instances.

The left substructure expands the beginning substructure by adding a singular common
object C with Color: ‘blue’ that defines each of the three common B objects, and
eliminating the three Color values that valuate those objects. The result is an AND/OR
substructure where each B object is a replicate object replicating object C, and object C
represents any of those three B objects. Object C’s object domain is [B' or B" or B"'].

Since the B objects in the left substructure are each a replicate of the same common
object, their use in defining object A in terms of object C is superfluous. The middle
substructure simplifies the left substructure by eliminating each of the B objects and their
associations, and replacing each of them with a single definition association directly from
object C to object A.

The right substructure further simplifies the specification of this information by

eliminating the three associations and replacing them with a single association that

displays a count along with the sign. The count stands for how many times common

object C defines object A and implies the following:

. The three replace associations with a 0-end on object A; and

. The three common duplicate B objects that define object A (shown in the
beginning substructure and the AND/OR substructure).

Object A remains a plural and-object by virtue of the implied common duplicate objects.
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Expansion Simplifications
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Figure 12. Equivalent Object Substructures Specifying Three Duplicate Objects

The same argument applies to product AND instance substructures, as well as AND value
substructures with either definition or production associations.

Incorporating count, the respective AND expressions applicable to object A in the two
simplification substructures are [+C, +C, +C] and [+3C]. Since the substructures specify the
same information, the four different A objects are identical to one another. An expression
statement specifying that identity is as follows: [+C, +C, +C] = [+3C]. The equivalent algebraic
statement is the equation: C + C + C = 3 C, where “+” is regarded as an operator. For value
production, the expression statement is [+C*+C*+C] = [C*+3] and the equivalent algebraic
statement is: C*C*C = C*, where “*” is an operator and the count is an exponent.

This simplification is implemented by storing an instance composition association attribute
called count. Table 3 describes this attribute. The term “count,” rather than number, is intended
to indicate the non-applicability of sign. The count attribute is abbreviated by “n”, a known
count is a natural (cardinal) number, an unknown count (“null”) is a variable (also shown as an
OR expression indicating that it is any natural number) and n is a parameter.

Table 4. Count Subtypes and Their Use as an Attribute

taxonomy of count (and abbreviation) display convention information specified
count | unknown count “null” The count of composition associations
(n) [1Tor2or...] is unknown.
known count | one “1” or blank There is one composition association
(n)
count >1 not 1 and one or more There are multiple composition
(n>) numerals not beginning with 0 | associations.

The count attribute in previous diagrams were all displayed with a blank count standing for 1. In
subsequent diagrams, a count is displayed to the right of the sign consistent with the
conventional notation for an integer.
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Note the following:

. Count arises entirely from the substructure simplifications discussed above consistent
with the axioms and notions presented here;

. A substructure with a common instance provides the context for comprehending a count;

. Count and sign arise independently and are thus independent attributes;

. Count does not specify ordinality;

. Zero is not a count; and

. A sign can be viewed as specifying both (1) the type of operator (i.e., a composition

association subtype) and (2) the sign of a non-zero integer.

Count simplifies the specification of a substructure by storing only one common instance rather
than multiple duplicate instances having the same traits. The omitted instances are implied by
the count attribute rather than stored. This simplification can be extended to an information
structure as a whole by storing only one common instance having a given unique combination of
traits. With this simplification, each stored instance has unique traits. The I-A platform is
presumed to be implemented consistent with this simplification.

9.3 Composed Instance Patterns

Figure 13 displays patterns for instances composed of one or more other instances through a
single stored composition association between the composed instance and each composing
instance. The applicable sign and count attributes are also displayed. These patterns are
distinguished by their instance composition association subtypes depicted by its iconic
abbreviation. Each pattern has its information type and supertype name displayed above it.
Each instance’s identity associations are optional and are omitted for clarity. Note that one of
the composition associations must have a + sign. Also note that if a count is >1, the composing
instance is necessarily a common instance; otherwise it is either common or particular.

Definition
Production . o o
Summation Generalization Specialization
Q---0 0...0 0---0 0--p

produced defined defined

<+n> - >+n< >+n>
Q... <sn> >sn< >sn>

instance instance instance instance

Figure 13. Composed Instance Patterns
9.4. Item Reality
Figure 14 displays example patterns for a concept composition association and an instance

composition association each with the same item on each end. That association is necessarily a
summation association that and is called a self-defining composition association.
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concept instance

Figure 14. Self-defining Composition Association

A self-defining composition association must have a count of 1 because any other count would
result in the item being not disjoint with respect to itself. Thus the information specified about
an item by its self-defining composition association is due to its sign alone. That information is
as follows.

If the sign is —, then it specifies a single exclusion of the item from itself. An item that is
excluded from itself once is interpreted as standing for nothing and is called a virtual
item.

If the sign is +, then it specifies a single inclusion of the item in itself. An item that
includes itself once is the opposite of a virtual item, i.e., it is real and is called a real item.

If the sign is +/—, then it specifies either of the two cases discussed above, i.e., it is
unknown whether the item is a real item or a virtual item. Such an item is called an
unknown reality item.

Since a —self-defining composition association must have a companion +self-defining
composition association, all items have a +self-defining composition association. Since all items
have a +self-defining composition association, it can be implied rather than stored. The I-A
platform is presumed to be implemented consistent with this simplification. Thus the absence of
any stored self-defining composition association specifies that the item is a real item. Diagrams
similarly omit that association and any indication of an item’s reality unless it is not a real item.

The information specified by a self-defining composition association or absence thereof is
conveniently discussed, displayed and expressed as an item pseudo-attribute called reality.

Table 5 describes this pseudo-attribute. The reality pseudo-attribute is abbreviated “r”, unknown
reality (“?”) is a variable (also shown as an OR expression) and “r” is a parameter.

Table 5. Reality Subtypes and their Use as a Pseudo-Attribute

taxonomy of reality (and abbreviation) | display convention information specified
reality | unknown reality “r It is unknown as to whether the
(r) [ior!] item is real or virtual.

known reality real “!I” or blank The item is a real item.

© virtual “r The item is a virtual item.

In subsequent diagrams, an unknown reality item is identified by a “?” inside the item circle.

When an [-A platform process analyzes a substructure with a virtual or uncertain item, it would
respectively ignore that item or treat it as discussed below for instances.
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9.5 Substructures with Unknown Reality Instances

The following describes the information specified by counts of instances with unknown reality
using an object substructure and it’s simplification. A simplified expression as indicated by the
“==>" symbol.

The substructure on the left in Figure 15 defines object A in terms of object D. Object D
is a common object having content 'a' and defines object C as a replicate in the same
manner as in Figure 12 but with unknown reality, i.e., object C is either virtual (i) or real
(1), expressed as +1'a' [i or !] (alternatively [+1'a' ?]) displayed to the right of the object.
The B objects are each a replicate of C and are disjoint with respect to object A. Being
disjoint with respect to A, they are independently either real (!) or virtual (7). Thus object
A is defined by zero, one or two real objects. This is shown in the AND expression for
A: [+1'a'[i or ], +1'a'[i or !]] which simplifies to: +'a'[i or +1 or +2], where i is the case
where both B' and B" are virtual so that A is also virtual.

The substructure on the right simplifies the previous substructure by eliminating objects
B' and B" in the same manner as the simplification for counts presented earlier. The
AND expression for A is +2'a' [i or !] (alternatively [+2'a' ?]) which expands to: +'a'[i or

+1 or +2].
A
+1'a'li or 1],+1'a'li or 1] ==> +2a'fior!] ==>
+'a'lior+1 or+2] +ali or +1 or +2]
>+1< >+1<
B' Bu
+1'a'li or 1] +1'a'f or 1] ==> >4+2<
+a'lior1]
>+1< >+1<
C C
+1'a'fior!] +1'a'lior]
>+1< >+1<

b [‘
objec objec

Figure 15. Equivalent Object Substructures Specifying Unknown Reality Objects

As demonstrated above, an unknown reality instance is the means of specifying uncertainty. The
term “random variable” is commonly used to describe the information specified by object A.

9.6 Producing Value Exclusions

Earlier, §9.1 noted that the use of a —~composition association is constrained to have a companion
+ composition association. An apparent exception to this constraint applies to a value specified
as the ratio of values. In that case the numerator value(s) are specified by +production
associations and the denominator value(s) are specified by —production associations, e.g., (Mass
value) * (Volume value)*~1 specifying a Density value. However this case is not an exception to
the above. First, note that the ratio value, its numerator values and its denominator values
directly valuate the same object. Second, note that all non-ratio values have the same a space-
time existence as the object it valuates. Third, note that all denominator values specify a portion
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of space-time existence. Thus, the exclusion of the denominator value(s) from the numerator

value(s) simply eliminates that portion of space-time existence from the numerator value and,
therefore, from the ratio value itself. (Ratios such as children per family and miles per gallon
are not values of objects; they are normalized statistics of a population or a process).

For the Density value example, the numerator Mass value and the denominator Volume value
each directly valuates the object, and each is understood as having the space-time existence of
the object they each valuate. The -production association of the denominator Volume value
excludes that portion of space-time existence from the numerator Mass value, leaving mass of
the object but without its spatial existence. Thus a Density value is mass without its spatial

b (13

existence, i.e., it’s “volumeless mass.”

The I-A platform is presumed to be implemented so that only a Space-time value can have a
-production association.

9.7 Zero

An instance that is defined by another instance through both a -n definition associations and a
companion +n definition association, where “n” is the same count, specifies that the 1-end
instance no longer defines the 0-end instance. The AND expression for the defined (0-end)
instance is [[+n0,-n0], ...], where O identifies the defining (1-end) instance and the ellipses
indicate zero or more other (1-end) defining instance(s). If the 0-end instance is also (currently)
defined by other 1-end instance(s), (as stated in §9.4) an I-A platform process analyzing the 0-
end instance would ignore the O instance. (A similar argument applies to production
associations).

If the 0-end instance is defined only by the 0 instance, its AND expression is [+n0,-n0] and is
interpreted as a virtual instance since it is a defined instance that is defined by nothing (and
would be so treated by an I-A platform process). Since sign, count and 0 are independent,
[+n0,-n0O] can be written: [+,-n0. The expression portion: [+,-] expresses the fact that the two
instances are not associated. That expression portion is conventionally expressed by the numeric
character zero (0). Using zero in this manner, the expression for the 0-end instance simplifies to:
0nO. This use of zero does not alter how zero applies in conventional mathematics other than
eliminating the problem of division by zero.

9.8 Specifying Plural Items and All Objects

The means of specifying (1) plural items and (2) all objects having a given class are
demonstrated in Figure 16. This figure displays an object definition substructure that defines
other objects with the same uncomposed singular common Person object (C) representing any
person. (The two identical C objects are for graphical simplicity; only one object C need be
stored). The common Person object (C) is the only common Person object with the following
non-class traits: real, no valuating values, null content and no composing objects. Absent Time
values, object C is a current object.

The left portion of this substructure demonstrates the specification of a plural concept.

The singular Person object (C) defines plural People object (C'). The singular class:
Person is stored and defined in a class structure; the plural class: People is not specified
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in a class substructure, instead it is specified by its classification association with the
plural object C'.

The right portion of the substructure demonstrates the specification of an object that
stands for all things having the non-class traits of the common object. The Person object
(A) is defined by multiple particular Woman objects, multiple particular Man objects
and one or more common Person objects. The +null summation association specifies
that there is an unknown count of common Person objects in addition to the particular
Man and Woman objects. Since there are no other Person objects defined by object C,
object A is interpreted as standing for all current persons with the traits of object C.
Object A is also a particular object because what it stands for is known.

A .
plural current particular

People- -
c P object representingall people
People [+null Person, +1 Person]
>+1> >+1> | >+1> >+1>
B B singular current
>+1< Man <—particular objects
>+null< >rnull< each representing an
identified person
<t+1< <t1<| <+1< <+1<
c C

singular current common
object representingany person

Person

Figure 16. Substructure Specifying the Plural of Person, All People and Any Person

Note that the left portion of the substructure demonstrates how a concept is specified so that it
can be recognized as either a singular concept or a plural concept, whether or not the content of
each is different, and whether or not one or both have non-null content. Note the following
regarding the right portion of the substructure:

. It uses both sub>super-concept (> >) and super>sub-concept (< <) associations;

. Object A is particular even though it is defined by an unknown count of Person objects;
. Object A stands for all current people in terms of any current person;

. The B objects along with the +null count specifies the object domain for object C; and

. Each B object is what is conventionally referred to as an instantiation of Person.

10. EXAMPLE COMPOSITION SUBSTRUCTURES AND PATTERNS

The following are a variety of examples of composition substructures and patterns that

demonstrate the application of this storage method and some additional consequences thereof.

For simplicity, a sign of + or a sign/count of +1 may be omitted. These examples demonstrate

the following about information specified using this storage method:

. A structure can and must specify all relevant information, i.e., no other information is
stored externally to the structure other than what is needed to manage it consistent with
the axioms, notions and presumptions discussed earlier;

. No simpler substructures can specify the same information;
. A more complex substructure would have redundant elements; and
. Information specified by a substructure is independent of any display convention.
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10.1 Algebraic Operation Examples

Figure 17 displays patterns for basic mathematical expressions. Shown to the right of selected

instances are expressions in terms of s, n and c that describe the information specified by that

instance; r is omitted for simplicity. Identity associations and 1-end composition associations are

omitted for clarity. The expressions use symbols as follows: “,” for definition, *” for

production, “” for sequential definition, *“/” for reciprocation and “*” for exponentiation.
Combination Reciprocation Sequential Definition Exponentiation

[s'n'c, s"n" c] @ [s/n c]

>sn<

S+n'< >s'n'< <s'n">
@ [s'n'c] [s'n'c]
value

>s'n'< >s'n'<

[s"n"e s'n' c] [(s'n' c)*s"n"]

01O

>

instance value

Non-exponential Production = Exponential Production

[S'nl c *s"n" C"]

=
o
=
o,
-
>
o,
=
*
—
o,
=
Q.
~
S
(2]
S

<+1> <+1> <g™n"™> <s"'n"™'>

QQ QF

L g semi< st
c@ c@ c@ c'@
value value
Figure 17. Patterns for Basic Algebraic Processes with Expressions

Note the following:

. Combination specifies either addition or subtraction when the signs are respectively the
same or different;

. Multiplication arises in two different forms, sequential definition and production; and

. Some patterns apply to values only.

An inspection of the above expressions reveals that the information specified by an uncomposed
instance and one of its composition associations is its sign, count and content, e.g., instance C'
and its association specifies s'n' ¢' (r is real and is omitted). This is equivalent the information
specified by a variable in an algebraic expression. The letter used to represent a variable is
equivalent to an item-id, e.g., C'. Thus the atomic components of an algebraic variable are the
attributes: s, n and c¢. In an I-A platform, a stored constant has all known attributes, e.g., +3
‘grams’; a stored variable has unknown sign, unknown count and null content, expressed here as:
+/- null "'
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10.2 Class Substructure Example

Figure 18 displays a class substructure for subclasses of Highway vehicle with the global
specific class. The super-most class is not displayed.

Truck
diesel
vehicle

/Automotive
[0-C] gasoline
vehicle

Gasoline
automobile

gasoline [0 truck
vehicle
Q

Diesel
vehicle

Gasoline
vehicle

Highway o
vehicle

body type fuel type

Figure 18. Portion of the Class Structure for Highway Vehicles

Note the following:
There are two independent class hierarchy substructures mapped by identity associations;
Highway vehicle has two identical classes that are synonyms: Highway vehicle by body
type and Highway vehicle by fuel type, that are each the superclass of one of the

independent class hierarchies;

Each class is composed of zero or one general class;

Classes that overlap (e.g., Automobile and Gasoline vehicle) are in different
so that all of the classes are disjoint; and

The specific subclasses for a given class are the given class’s class domain as

singular
! specific
classes

general
classes

hierarchies

suggested

by the two OR expressions, e.g., Automobile and Truck are the class domain for

Highway vehicle by body type.

10.3 Geographic Location Example

Figure 19 displays a substructure for a portion of the particular Geographic location objects for
counties and congressional districts in the state of California. Since the counties and
congressional districts spatially overlap (i.e., are not disjoint), the object that represents the state
as a whole has two identical objects that are each at the top of an independent object AND

substructure.
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Geographic location

Name : 'State of California’

Geographic location s s Geographic location

Name : 'Alameda County" Name : "Congressional district 53"
>< >< >< >< >< ><

4 AY 7 A}

Name: '"Yuba County' Name : 'Congressional district '1'

Geographic location

Figure 19. Object Substructure Specifying Geographic Areas

Note the following:

. Each object is a particular singular object classified by the same class;

. Objects B', A and B" are identical;

. Each uncomposed object indirectly defines both objects B' and B";

. Each defined object is a multiply-defined singular object whose defining objects are
somehow adjacent;

. The objects defining the same object interact as a consequence of their adjacency;

. This substructure can be extended to specify more than two simultaneous geographic
subdivisions;

. Each object except the uncomposed objects has its own Name value;

. Terms such as “district,” “county,” “state,” etc., are not classes, rather they are
components of naming conventions; and

. Object E can be identified as the intersection of the two objects it defines.

10.4 Variable Object Traits Examples

A thing can have varying characteristics. The combination of characteristics applicable to a
thing during a portion of its spatial existence is commonly referred as its state. An object can
store only one combination of traits during a given Time interval. However, each different state
can be specified by an object called a state object and those state objects can define an object
that stands for the thing during all of its states. Each state object is disjoint and temporally
adjacent to one or two other state objects.

Figure 20 displays two substructures: one that specifies different values and the other specifying
different producing objects. The left substructure specifies an Automobile object (A) is defined
by state objects B' and B" having adjacent temporal existences during which their Color values
are different. The stored start and end Time values of object A are implied as applying to objects
B' and B". The right substructure is similar, but is for an object with different producing objects.
The class of object C" has an implied classification association with an un-stored singular class
that is expresses as: “Automobile, -Engine” where the double quotes indicate that its class is
implied.
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A

<—singular defined objects—>  Automobile

tart Time: '5/1/1982'
end Time: '3/31/2005'
VIN : 'AAED3R46432'

tart Time: '7/7/1993'
end Time: '5/30/2002'

end/start Time: '8/20/1996'
end/start Time: '8/20/1996'

"Automobile, - Engine"- - /- - - - singular
Color: 'Blue' c producing
Engine objects

Engine ID:'AB21123'
start Time: '4/02/1982'

Engine ID:'RW46432'
tart Time: '4/20/1996'
end Time: '3/31/2005'

Figure 20. Object Substructures Specifying Variability in Values and Producing Objects

A substructure that specifies varying class or content would be similar to the one shown above
left specifying varying value.

10.5 Object Sequence Examples

Figure 21 displays two substructures that each specify a sequence of singular particular objects
B', B", etc., by the use of sequencing objects A', A", etc. The left substructure specifies a
sequence of three Character objects forming the character string “cat”. The right substructure
specifies a sequence of men and women in a queue with both partial and uncertain sequencing.
Ordinal numbers are displayed below each uncomposed object to describe that object’s sequence
as specified by the sequencing objects.

People --
. A
sequencing
objects
><,

>> >>

1 2 3 o specfied 4 2 2 3or4 3o0rd4 5

sequence

Figure 21. Object Substructures Specifying Full, Partial and Unknown Object Sequence

Note the following in each substructure:

. The sequenced objects have no sequence among themselves, sequence is specified by
sequencing object that succeed the sequenced objects;

. Sequencing object A' is a replicate of B';

. Sequence is specified without the use of ordinals; and

. There can be other simultaneous specifications of sequence for the same objects.
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Also note that in the right substructure:

. The uncertain sequencing is specified by two different sequences; and

. If identical objects A" and """ A were one object, then objects B"", B"" and B""" would
define that object twice.

10.6 Organization Example
Figure 22 displays an object substructure specifying contracts, roles, work and assignments for

the parties in an employment contract. Each object is assumed to have a different temporal
existence and be uniquely identified.

Authorized position assignment QWork assignment
<>

Qwork
Identifier: 'Task 3'
Employment contract i Project engineer
(subclass of Authorized positioh
Q e L e Assistant engineer
< < (subclass ofEmployee role)
Person—@ Organization

Figure 22. Object Substructure Specifying a Contract, Role, Work and Assignment

Note that the Organization object is included in the Employee role object (indirectly through
the Employment contract object) and directly exc/uded from that object. This specification is
consistent with our understanding of (1) a contract as specifying the roles of each party and (2)
that each party’s role is that part of the contract remaining after excluding all other parties. This
exclusion is also necessary so that the Employee role object has disjoint producing objects.
Also note that there are two identical Employee role objects: one produced and the other
defined, the latter specifying all roles during that employment contract.

10.7 Value Domain Example

Figure 23 displays a portion of the value substructure that specifies the Length value domain for
the English system. The uncomposed common value, called a metric unit value, represents any
length at the threshold of observability. Non-null value content are singular or plural units of
measure. Expressions are displayed for selected values in terms of the ‘foot’ value along with a
simplified form of the expression. Also shown is the definition of the unit of measure ‘rod’ and
its plural, as well as the singular and plural metrics and values.
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Figure 23. Length Value Domain for the English System Values

Note the following:

This substructure specifies an un-itemized (and uncountable) value domain;

Each simplified expression is a conversion factor that is generated by following the path
from the ‘foot’ value to the subject value with the direction with respect to the definition
association determining whether or not the count is a reciprocal;

The identity association is not stored because it can be deduced by the I-A platform,;

The plural metric: Length is defined in this substructure and all other values have an
implied value classification association with the plural metric: Length (some of which are
displayed); and

The metric unit value is the only singular value.

10.8 Person Uncertain Height Example

Figure 24 displays a substructure specifying the Height value of a particular Person object with
an uncertainty range of 5 ‘feet’ 7 ‘inches’ to 5 ‘feet’ 10 ‘inches’. The expressions to the right of
value A, C and D describe the information specified by those items. This example also
demonstrates how Quantitative values with mixed units of measure are specified.
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[[0 or1 or2 or3]'inches']

[[0or+1]1'inch]

Figure 24. Value Substructure Specifying Uncertain Person Height

10.9 Algebraic Law

The algebraic law for distributivity is expressed by the following mathematical statement:

(NIx N)+ (N2 x N)=(NI+N2) x N, where X is an operator for either form of multiplication,
i.e., sequential definition or non-exponential production (see §10.1), and N, NI and N2 are
parameters for real numbers. Figure 25 displays the pattern for one form of distributivity:
sequential definition for integers including zero. This pattern is described by the following
expression statement: [(s'n' ® sn), (s"n" ¢ sn)] = [(s'n', s"n") * sn]. Note that this expression
statement is more general than the mathematical statement because (1) it separates sign and
count, (2) it explicitly identifies the signs and counts as known (i.e., parameters), (3) it does not
use sign as an operator, (4) it indicates that it specifies an identity not an equality or function,
and (5) it is specific to one of the two forms of multiplication.

Instance

Figure 25. Sequential Definition Distributivity Pattern

11. SUMMARY AND OBSERVATIONS

Working from first principles described by axioms and notions, a very general method for
managing information was developed. The axioms and notions plus the means of implementing
them give rise to a method for storing information and a platform for managing it (the I-A
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platform). The storage method, composed of binary elements, is the simplest possible storage

method. Rather than separating data elements from their organization, they are integrated so that

information can be specified in a single information structure. Additionally:

. The method provides the means of specifying information not readily available using
current methods, including: class and object hierarchies with overlapping items; value
domains with units of measure; temporal variability; uncertainty and random variables;
and complex sequences;

. Sign and count are independent attributes;

. Count arises from a structure simplification consistent with the axioms and notions;
. Zero is not a count but behaves like a count;

. Information can and must be stored in its most resolved form:;

. Null content and unknown content are distinguishable; and

. Information stored in this platform would be fully normalized.

The difference between information and data is revealed to be as follows: information is what is
specified by an information structure; data consists of what is stored in the sign, count and
content attributes of the elements in that information structure.

The examples demonstrate the following mathematical-like consistency and rigor when
information is stored in the I-A platform:

. Uniqueness — There is only one way of specifying a given unit of information; and
. Completeness — An information structure can and must completely specify the subject
information.

Information stored using this method corresponds to how human use information to comprehend
the world. This is evidenced by unigueness and completeness as well as the following:

. Data and all of its organization are integrated;

. Information is stored in a single information structure;

. The method can handle a great variety of information; and
. Element subtypes correspond to commonly-used words.

The graphical notation and expression notation convey the subject information more robustly,
consistently and concisely than current notations.

Parsons and Wand [2000] discussed the problem of inherent classification found in current
methods used to organize information. The storage method discussed here eliminates that
problem by specifying a class structure that is independent of the instance, and requiring greater
rigor in the specification of that organization.

Codd’s relational model [Codd, 1970] freed users from having to know the internal specification
(physical organization) of the information. The storage method discussed here takes additional
steps in that direction. Specifically, it eliminates:

. Having to rely on an externally-specified data storage structure (i.e., schema, file formats,
data types and code);

. Needing to organize information around the ambiguous notion of an entity; and

. Separating storage from display formats.
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A platform implementing this storage model would likely require more storage and possibly be
slower than a platform implementing the current paradigm. However there are growing costs
associated with maintaining that paradigm (e.g., incompatibility, support of multiple languages
and the need to deploy multiple data structure-specific platforms). As storage costs continue to
decrease and processor speed continue to increase, the relative advantage of the current paradigm
may disappear if it has not already.

Although this discussion is brief; it does suggest a useful alternative to the current methods of
organizing information that is closer to how we comprehend it. The method appears to explain
some fundamental characteristics of information, thereby providing a foundation for the study
information itself and a basis for a universal platform for storing information. It also suggests an
alternative foundational basis for mathematics.
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